
Superconductor: A Language for Big Data Visualization

Leo A. Meyerovich, Matthew E. Torok, Eric Atkinson, Rastislav Bodı́k
University of California, Berkeley ∗

{lmeyerov,mtorok,ericatkinson,bodik}@eecs.berkeley.edu

1. Introduction
Increases in data availability is the force behind many recent inno-
vations in society. However, visualization technology for exploring
data is not keeping up. Designers must choose between scale and
interactivity. They want big displays because of the ability to show
an entire data set. However, viewers get lost in a sea of noise, so
they also want interactivity. Performance constraints limit interac-
tions to operating on a small data slice.

We present SUPERCONDUCTOR: a high-level visualization lan-
guage for interacting with large data sets. It has three design goals
that we distilled from popular visualization languages:

• Scale. Visualizations should support thousands or even millions
of data points. For example, Matlab and Circos1 are used for
static visualizations of large data sets.

• Interactivity. Interactions should be within 100ms and anima-
tion should achieve 30fps. For example, JavaScript and its li-
braries such as D3 [2] are used for animating data and orches-
trating interactions with users.

• Productivity. Programming should be at least as high-level as
JavaScript. Designers invoke and customize visualizations in
the above systems, and even create new ones from scratch. They
less frequently do so with C++ and OpenGL.

Visualization languages support one or two of the above goals, but
only SUPERCONDUCTOR seeks to address all three (Figure 1).

SUPERCONDUCTOR is split into three domain specific lan-
guages (DSLs). It refines our early design of a parallel browser [3]
with lessons on how to combine the components [6, 7]. Each DSL
is declarative and parallel:

Name Role Tree traversal patterns
layout define how to lay out a widget preorder, postorder
rendering define how to paint a widget prefix sum, for-all
selectors map data to stylized widgets for-all

By automatically optimizing these DSLs, SUPERCONDUCTOR sup-
ports the design of big, interactive visualizations.

∗ Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227). Additional support comes from Par Lab affiliates National
Instruments, Nokia, NVIDIA, Oracle, and Samsung.
1 http://www.circos.ca/

HIGH-LEVEL
INTERACTIVE

LARGE DATA SETS

JavaScript, D3

Matlab, CircosC++, OpenCL/GL SUPERCONDUCTOR

Figure 1: Design axes for visualization languages.

Figure 2: Interactive treemap of 94,000 voter polling stations.

2. Architecture & Example
We explain our DSLs through a treemap visualization of recent
election results (Figure 2). The area of a small rectangle depicts
voter count at one polling station, and the coloring depicts the av-
erage party voted for (red, white, or a hue in-between). Borders
show how the 94,000 stations are grouped by districts. Black color-
ing highlights stations with a 80-100% voter turnout. Sliders filter
stations by turnout and a dropdown menu toggles the highlighting.

The DSLs form a three-stage pipeline at runtime (Figure 3).
First, CSS selectors [1] map voting data into a treemap widget
and manipulate colors and filters. We implement selectors with a
parallel for-loop [6]. Second, layout solves the size and position
constraints of each treemap element. A sequence of parallel pre-
order and postorder tree traversals computes them. Offline, a de-
signer declaratively specifies the treemap in our extension to at-
tribute grammars [4, 7] and our synthesizer statically schedules as
tree traversals. Finally, the runtime layout solver issues rendering
commands. Our rendering API optimizes the use of GPU memory.

3. Selector DSL for parallel styling
CSS selectors [1] map the document tree into a tree of layout
widgets and add style constraints. For example, the selectors in
Figure 4 map voting data into three types of treemap nodes and
customize the border style. Every rule left-hand side matches a
set of nodes. Reading the expression “.Nation *” right-to-left, it

multicore selector engineDocument

Selectors Document tree

GPU layout solver

synthesized schedule of parallel tree traversals

GPU renderer

Document tree
with solved

 style constraints

Type = square

x = 10
w = 7

Widget
Spec

Schedule
Sketch

Synthesizer

Sequential
Scripting

Figure 3: Parallel system architecture of SUPERCONDUCTOR.

1 . N a t i o n { d i s p l a y : Root ; wid th : 400 px }
2 . N a t i o n ∗ { d i s p l a y : I n t e r m e d i a t e ; b o r d e r : 2px r e d }
3 . P r e c i n c t { d i s p l a y : Leaf ; min : 0 . 2 ; max : 0 . 4 }

Figure 4: Selectors for mapping XML into a stylized treemap

1 c l a s s Root
2 c h i l d r e n c : [Node] //layout tree schema
3 i n p u t wid th = 300 ; //default overridable by selectors
4 v a r h e i g h t = wid th ;
5 v a r r e n d e r = p a i n t S q u a r e (0 , 0 , v o t e s [l a s t] , v o t e s [l a s t])
6 v a r v o t e s [−1] = 0
7 v o t e s [i] = v o t e s [i − 1] + c [i] . v o t e s
8 . . .
9 c l a s s Leaf : Node

10 i n p u t c o u n t = 0 , min = 0 . 0 , max = 1 . 0
11 v a r v o t e s = t u r n o u t ∈ (min , max) ? c o u n t : 0
12 . . .
13 schedSketch : parPreorder ; parPostorder ; ; ;

Figure 5: Declarative specification of the election treemap. Line 13
is the parallel schedule sketch and the rest is functional behavior.

matches any node (“*”) with an ancestor whose attribute “class”
is “Nation”. Right-hand side properties, such as “border: 2px
red”, are attached to matched nodes.

The DSL simplifies parallelization: it guarantees that rules can
be matched independently. Previously [6], we built a native multi-
core engine that optimizes matching as a parallel for-all loop over
nodes. We are now experimenting with two variants built on web
standards: a multicore one via zero-copy message passing (workers
with transferable objects), and a GPU variant via WebCL.

Selectors enable making sweeping changes to a visualization.
For example, the min/max fields on line 3 control which polling
stations to show based on voter turnout. A script binds UI sliders to
the fields. JavaScript is fast enough for running the script because it
modifies selector rules rather than nodes. The computations need-
ing acceleration are downstream: selectors, layout , and rendering.

4. GPU layout through schedule synthesis
After selectors associate style constraints with nodes, layout solves
all of the constraints. Widgets are attribute grammars [4, 7]. Every
attribute of a widget either appears on the left-hand side of one
widget constraint, as in variable height in line 4 of Figure 5, or is
provided by matched selectors, such as input width being provided

by line 1 of Figure 4. The right-hand side of a constraint may
reference attributes of adjacent nodes, such as the tallying of child
vote fields in lines 6-7.

Layout executes as a sequence of parallel tree traversals. The
tree traversal schedule must observe data dependencies, such as
the paintSquare call on line 5 occurring after vote tallying on
lines 6-7. Offline, our synthesizer statically analyzes the grammar
to compute the schedule. It returns a pattern for each pass (e.g.,
parallel preorder) and what computations to run in a node visit (e.g.,
the vote tally in the first pass and rendering calls in the last).

Our schedule synthesis algorithm [7] desugars a widget specifi-
cation into an attribute grammar (AG) [4]. AGs simplify scheduling
because a node’s constraints are local to its neighborhood. Once
scheduled, our compiler performs optimizations for trees such as
tiling. This enabled multifactor speedups in our multicore backend,
and we are now exploring optimizations for our GPU backend [5].

Our DSL’s schedule sketching [7] construct enables lightweight
partial specification of the automatic parallelization. For example,
line 13 of Figure 5 specifies 5 traversals. It declares the patterns
of the first two, and none of the attributes to compute within them.
Our synthesizer finds schedules satisfying the sketch and grammar.

Sketching also improves optimization time. Our schedule syn-
thesizer uses them to prunes its search space. Autotuning for the
fastest schedule is also faster because fewer schedules are profiled.

5. Automatic memory management for rendering
Passing layout information to a GPU renderer is a bottleneck.
SUPERCONDUCTOR uses three key techniques. First, as both layout
and rendering occur on the GPU, the rendering API invoked by
layout does not move data off of the GPU. Second, rendering API
calls directly generate vertices that OpenGL renderers use.

Our third technique hides memory allocation. The layout solver
automatically preallocates layout memory as soon as the tree size is
known, but rendering memory must be dynamically allocated. For
example, a large circle needs more vertices than a small circle, and
the circle size might be computed as part of layout solving. The
first rendering API pass precomputes the buffer space and position
needed to render each node. It is a prefix sum over the tree [5] that,
in essence, partially evaluates rendering calls for a given input. The
full rendering buffer is then allocated, and a second rendering pass
fills it in. Our synthesizer fuses the passes into the layout traversals.

6. Conclusion
We have shown how high-level programming abstractions support
automatic parallelization. We examined three cases: selectors, lay-
out, and rendering. In the case of layout, declarative constructs can
further guide parallelization. Together, these ideas enabled our goal
of high-level programming of big, interactive visualizations.

References
[1] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading style sheets, level

2 CSS2 specification, 1998.
[2] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents.

IEEE Transactions on Visualization and Computer Graphics, 2011.
[3] C. Jones, R. Liu, L. Meyerovich, K. Asanović, and R. Bodı́k. Paralleliz-

ing the web browser. HotPar’09, 2009.
[4] U. Kastens. Ordered attributed grammars. Acta Informatica, 1980.
[5] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph traver-

sal. In PPOPP ’12, pages 117–128, 2012.
[6] L. A. Meyerovich and R. Bodı́k. Fast and parallel webpage layout. In

WWW’10, pages 711–720, 2010.
[7] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodı́k. Synthesiz-

ing parallel schedules for attribute grammars. In PPOPP ’13, 2013.

