Système d’information décisionnel : A quoi cela sert-il ?
Michel Bruley
Dans l’entreprise le système d’information (SI) a pour objectif de faciliter l’établissement et la mise en œuvre de la stratégie, en particulier de concrètement supporter la réalisation des activités. Il est construit à partir des exigences des métiers, des processus définis par l’entreprise, et il est constitué de l’ensemble des moyens (humains, logiciels, matériels) utilisés pour collecter, stocker, traiter et communiquer les informations.
Il est d’usage de distinguer trois types différents de SI, les systèmes supportant la conception des produits (calcul numérique, CAO, ...), les systèmes industriels (conduite de machines, contrôle de process, ...) et les systèmes de gestion. Ces derniers couvrent toutes les activités de gestion du fonctionnement de l’entreprise (marketing, vente, achat, production, logistique, finance, ressources humaines, R&D). Pour des raisons techniques, qui existent toujours en partie aujourd’hui, les systèmes d’information de gestion ont été historiquement structurés en deux sous systèmes : l’un dit opérationnel qui prend en charge la réalisation des opérations au jour le jour et l’autre dit décisionnel qui fournit des informations pour définir la stratégie, piloter les opérations et analyser les résultats.
Un système décisionnel est donc avant tout un moyen qui a pour but de faciliter la définition et la mise en œuvre de stratégies gagnantes. Mais il ne s’agit pas de définir une stratégie une fois pout toute, mais d’être à même de continuellement s’adapter à son environnement, et de le faire plus vite que ses concurrents. Pour cela il convient de bien comprendre son environnement, d’ajuster ses interactions avec lui en faisant les meilleurs choix de cibles et d’actions. Concrètement le chemin à suivre peut être caractérisé par les quatre objectifs suivants : comprendre son environnement, se focaliser sur des cibles, aligner son organisation et mettre en œuvre les plans d’actions nécessaires.
Un système décisionnel va en particulier aider au pilotage des plans d’actions (prévision, planification, suivi), à l’apprentissage (acquisition de savoir faire, de connaissances, de compétences) et à la réalisation d’innovations incrémentales (adaptation du modèle d’affaires : produits/services, organisation, etc. …). Les systèmes décisionnels traditionnels permettent de faire l’analyse des activités déjà réalisées et d’en tirer des enseignements pour les activités futures, pour cela ils utilisent des données plus ou moins récentes (au mieux mises à jour quotidiennement). Les systèmes décisionnels plus avancés gèrent des données plus fraîches (certaines sont mises à jour en quasi temps réel), automatisent des décisions et supportent en temps réel des opérations (centre d’appels, web par exemple).
Pour aller plus loin sur l’usage des systèmes décisionnels, vous pouvez utilement consulter mes compilations d’articles et la présentation ci-dessous :
Du pilotage stratégique à l’intelligence économique
Approches analytiques de pointe, data mining ou fouille de données
Propos sur l’analyse
Présentation : apprentissage stratégique
> A LIRE EN CE MOMENT SUR DECIDEO
-
Selon une étude de Finextra et Cloudera, 91 % des institutions financières considèrent l’IA hybride comme fortement créatrice de valeur, en faisant la nouvelle norme du secteur
-
Informatica collabore avec Emirates Flight Catering pour mettre en place un service de restauration plus intelligent et axé sur les données
-
Celonis s'associe à Databricks pour optimiser une IA d'entreprise qui améliore en continu les opérations
-
Snowflake annonce de nouvelles innovations pour accélérer le développement d’applications d’IA agentique de niveau entreprise
-
Qualtrics fait évoluer sa gouvernance d’IA pour soutenir l'innovation sur mesure et les retours clients
-
SAP donne aux développeurs les moyens de piloter la révolution de l’IA des métiers
-
Infios et Amazon Web Services, Inc. (AWS) unissent leurs forces pour transformer l’exécution de la supply chain grâce à l’intelligence artificielle agentique
-
Une nouvelle étude révèle une accélération de la migration vers SAP S/4HANA, malgré les défis persistants liés à l'automatisation
-
Akeneo permet aux entreprises de proposer des expériences produits optimales grâce à des flux de données intelligents pilotés par l’IA
-
Netskope Threat Labs : l’industrie manufacturière autorise l’usage de l’IA pour réduire les risques liés à son utilisation incontrôlée