Pour toutes les sociétés, la qualité des données est une question importante. A mesure que de nouveaux domaines thématiques sont ajoutés dans un entrepôt de données, la valeur des informations se multiplie. Malheureusement, l’impact des erreurs se multiplie également. Le but d’une équipe de gestion de la qualité des données, est de développer des règles communes et une terminologie cohérente, qui seront utilisées par les diverses unités de l’entreprise. Un programme de gestion de la qualité des données permet de promouvoir l’instauration d’une information exploitable dans l’ensemble de l’entreprise, afin que celle-ci mette le cap sur la rentabilité.
Selon le Data Warehousing Institute, la médiocre qualité des données coûte chaque année des milliards d’euros aux entreprises. Dans une récente enquête, près de la moitié des personnes interrogées considère que les données de leur organisation sont «pires que ce qu’ils pouvaient imaginer». Dans ces conditions l’amélioration de la qualité des données, même à petite échelle, peut considérablement influencer la prise de décision dans les entreprises, favorisant ainsi une augmentation des bénéfices. Malheureusement, de nombreuses initiatives en matière de qualité des données ne voient jamais le jour, car la tâche est toujours perçue comme difficile. Ainsi la plupart des entreprises se focalisent principalement sur la rentabilisation à court terme de leur système d’information décisionnel, et n’investissent pas dans la qualité des données.
Cependant, une procédure simple consiste à pointer les principaux problèmes de qualité des données, à créer des règles pour isoler, réparer les erreurs et utiliser ensuite un tableau de bord, pour contrôler et évaluer les zones de qualité des données de manière constante. Un tableau de bord de la qualité des données bien conçu, aide les entreprises à mieux comprendre les problèmes de qualité des données, à évaluer les possibilités d'amélioration et à mesurer le progrès au fil du temps. Il est possible d’élaborer un tableau de bord de la qualité des données, et d'autres rapports de gestion des données en seulement trois semaines. Le tableau de bord peut être implémenté à l’aide d’un portail ou à l’aide de l'outil de reporting qu’utilise déjà l’entreprise.
Bien qu'un plan d'action de qualité des données soit impératif pour toutes les entreprises, cette approche est plus facile à mettre en œuvre dans les entreprises qui commencent à mettre en place leur entrepôt de données. En abordant très tôt les problèmes de qualité des données, les actions importantes nécessaires au succès sont plus faciles à organiser que lorsqu’il faut revenir sur des réalisations déjà mises en production. Il convient aussi dans le cadre du système d’information décisionnel, d’industrialiser le processus technique des contrôles et des rejets, et donc de mettre en place un outil générique pour les contrôles et les rapprochements.
Enfin, la qualité des données n’étant pas qu’une problématique technique, et comme elle touche avant tout les utilisateurs métiers de l’entreprise, il faut impérativement responsabiliser les propriétaires des sources et faciliter le processus de validation fonctionnelle des données. Pour cela il convient d’organiser une structure de gouvernance viable, en particulier de définir des gestionnaires de données.
Pour aller plus loin sur ce sujet vous pouvez utilement consulter mes articles ci-dessous :
Cap sur la qualité des données
Maîtriser la qualité des données : une tâche pour Sisyphe ?
Impact de la qualité des données sur les résultats des compagnies d’assurances
Rédigé par Michel Bruley le Samedi 1 Mai 2010 à 08:22
|
Permalien
|
{0}
> A LIRE EN CE MOMENT SUR DECIDEO
-
Selon une étude de Finextra et Cloudera, 91 % des institutions financières considèrent l’IA hybride comme fortement créatrice de valeur, en faisant la nouvelle norme du secteur
-
Informatica collabore avec Emirates Flight Catering pour mettre en place un service de restauration plus intelligent et axé sur les données
-
Celonis s'associe à Databricks pour optimiser une IA d'entreprise qui améliore en continu les opérations
-
Snowflake annonce de nouvelles innovations pour accélérer le développement d’applications d’IA agentique de niveau entreprise
-
Qualtrics fait évoluer sa gouvernance d’IA pour soutenir l'innovation sur mesure et les retours clients
-
SAP donne aux développeurs les moyens de piloter la révolution de l’IA des métiers
-
Infios et Amazon Web Services, Inc. (AWS) unissent leurs forces pour transformer l’exécution de la supply chain grâce à l’intelligence artificielle agentique
-
Une nouvelle étude révèle une accélération de la migration vers SAP S/4HANA, malgré les défis persistants liés à l'automatisation
-
Akeneo permet aux entreprises de proposer des expériences produits optimales grâce à des flux de données intelligents pilotés par l’IA
-
Netskope Threat Labs : l’industrie manufacturière autorise l’usage de l’IA pour réduire les risques liés à son utilisation incontrôlée
Profil
Michel Bruley
Liste de liens
Dernières notes
Galerie
Archives
Rubriques
Rubriques








