A défaut de prévoir ou d’être à même d’anticiper le futur même immédiat, je vous souhaite une bonne année 2012.
Cela dit, il ne faut pas confondre prévision et prospective. Les différences portent notamment sur l’horizon temporel (court vs long), la démarche (extrapolation du présent vs imagination), l’attitude à l’égard du futur (passive/réactive vs proactive/créative), les variables (primauté du quantifiable vs qualitatives/quantifiables ou non) et les méthodes (modèles déterministes vs construction de scénarios). Prévoir, c’est donc chiffrer par avance ce qui doit arriver avec un niveau d’incertitude faible.
Les prévisions sont importantes pour toutes les fonctions de l’entreprise. La Finance utilise les prévisions pour estimer les besoins futurs en capital, les Ressources humaines évaluent les besoins de main-d’œuvre, la fonction Marketing/Ventes développe des prévisions de ventes utilisées pour la planification, et la direction des Opérations développent et utilisent des prévisions pour établir les horaires de la main-d’œuvre, déterminer les besoins en stocks et planifier les besoins en capacité.
Dans la période économique actuelle, être à même de faire de bonnes prévisions est crucial. Il est donc important de bien comprendre le processus de prévision statistique, de connaître les grands principes des modèles utilisés afin de mieux contrôler les étapes de l’élaboration des prévisions. Si toutes les fonctions de l’entreprise font des prévisions, la prévision la plus importante de toutes est celle de la demande qui permet : d’établir quelle capacité de production est requise afin d’ajuster l’offre à la demande, de choisir les technologies appropriées au niveau de demande, d’orienter la politique et les stratégies de gestion des stocks, de déterminer les meilleures stratégies de production, de planifier l’utilisation des équipements, les besoins en équipements et de planifier la main-d’œuvre requise.
Concrètement pour prévoir la demande, il s’agit de prendre en compte la tendance (variation significative de la demande en fonction du temps), la saisonnalité (évolution régulière qui se répète périodiquement), les cycles (évolution qui s'étale sur plusieurs années et qui peut être attribuée à des cycles de vie des produits ou à des conditions économiques, politiques, etc.), les irrégularités (variations provoquées par des circonstances inhabituelles), et enfin les aléas possibles (variations qui ne peuvent être expliquées).
Dans tous les cas seule une bonne gestion des données historiques nécessaires peut assurer une production de prévisions de la demande de qualité. Pour aller plus loin sur ce thème des prévisions vous pouvez utilement consulter mes autres articles sur ce sujet : cliquez ici
Tags :
Analyse de Données
Big Data
Business Intelligence
Cloud Computing
CRM
Data Mining
Data Warehouse
Décisionnel
Infocentre
Intelligence Economique
Marketing
Médias Sociaux
Relation Client
Réseaux Sociaux
Système d'information
Virtualisation
Web 2.0
Rédigé par Michel Bruley le Lundi 2 Janvier 2012 à 09:28
|
Permalien
|
{0}
> A LIRE EN CE MOMENT SUR DECIDEO
-
Selon une étude de Finextra et Cloudera, 91 % des institutions financières considèrent l’IA hybride comme fortement créatrice de valeur, en faisant la nouvelle norme du secteur
-
Informatica collabore avec Emirates Flight Catering pour mettre en place un service de restauration plus intelligent et axé sur les données
-
Celonis s'associe à Databricks pour optimiser une IA d'entreprise qui améliore en continu les opérations
-
Snowflake annonce de nouvelles innovations pour accélérer le développement d’applications d’IA agentique de niveau entreprise
-
Qualtrics fait évoluer sa gouvernance d’IA pour soutenir l'innovation sur mesure et les retours clients
-
SAP donne aux développeurs les moyens de piloter la révolution de l’IA des métiers
-
Infios et Amazon Web Services, Inc. (AWS) unissent leurs forces pour transformer l’exécution de la supply chain grâce à l’intelligence artificielle agentique
-
Une nouvelle étude révèle une accélération de la migration vers SAP S/4HANA, malgré les défis persistants liés à l'automatisation
-
Akeneo permet aux entreprises de proposer des expériences produits optimales grâce à des flux de données intelligents pilotés par l’IA
-
Netskope Threat Labs : l’industrie manufacturière autorise l’usage de l’IA pour réduire les risques liés à son utilisation incontrôlée
Profil
Michel Bruley
Liste de liens
Dernières notes
Galerie
Archives
Rubriques
Rubriques








