Créer son blog Recommander ce blog Avertir le modérateur

Le data mining, la fouille de données ou toutes les approches analytiques de pointe représentent les formes les plus ambitieuses de l’Informatique Décisionnelle. Les techniques sous jacentes sont issues des Statistiques ou de l’Intelligence Artificielle, et certaines comme les Réseaux de Neurones, les Arbres de Décision, les Réseaux Bayésiens ou la Logique Inductive furent développées il y a plusieurs décennies dans des contextes très différents. Attention il ne s’agit pas de techniques informatiques, mais de processus de recherche automatique d’information dans un grand volume de données en mettant en œuvre toute technique appropriée.



Le postulat fondamental de ces approches est que dans toute base de données enregistrant les événements d’un processus économique, les données ne sont pas distribuées au hasard. Bien que ces données soient simplement constatées, le plus souvent collectées à des fins purement opérationnelles, on suppose qu’elles ont été générées par une réalité en grande partie déterministe, mais selon des processus que généralement on ne connaît pas. Les approches analytiques cherchent à mettre en évidence, décrire et permettre de reconstruire les effets de ces processus. Cette action d’identification des effets d’un processus à partir de données se caractérise par la construction d’un modèle, ensemble de règles, d’équations, de formules qui rendent compte de la distribution des données dans la base.

Construire méthodiquement un modèle des données dont on dispose sur un objet de gestion, est un saut important sur le chemin de la connaissance et de la décision. Au lieu de gigaoctets de données brutes, le décideur dispose alors d’une vue interprétable de son sujet d’étude. Mais attention de ne pas se laisser piéger par la métaphore liée à l’expression data mining qui suggère que les données (data) ne seraient qu’un amoncellement de débris, que l’on creuse (mining) à la recherche de la pépite. Elle fait croire que le data mining rejette une grande proportion des données disponibles, pour ne conserver qu’une petite partie particulièrement significative. Or ce n’est pas exactement le cas, dans l’élaboration d’un modèle toutes les données sont prises en compte et traitées sensiblement sur un pied d’égalité. Le modèle est construit en fonction des régularités (patterns) de l’ensemble des données. Le succès de l’analyse se mesure à sa capacité à détecter les régularités fortement significatives.

D’autre part pour certains, toutes ces approches analytiques de pointe, data mining ou fouille de données ne seraient que de nouveaux noms branchés de la vénérable statistique. La réponse est : oui, mais …. Oui, car si vous faisons abstraction des techniques mises en œuvre, l’objectif est le même : élaboration et interprétation de modèles de la réalité construits à partir d’une description partielle de cette réalité par des données. Mais …, car la statistique traditionnelle ne répond pas complètement aux attentes des utilisateurs potentiels. Le progrès le plus attendu des nouvelles approches c’est l’industrialisation des analyses, alors que la statistique reste une activité artisanale, réservée à un petit nombre de spécialistes traitant avec beaucoup de soin un petit volume de données très structurées, et mettant en œuvre un savoir faire peu automatisé. Or l’ambition des nouvelles approches c’est d’amener les biens faits de la statistique à tous les responsables sans qu’ils aient constamment recours à des statisticiens.

Cependant il ne faut pas se cacher, que la réalité est souvent compliqué, voire complexe, et que les approches analytiques peuvent être délicate à mettre en œuvre et leurs résultats parfois ambigus ou incertains, même si de nombreuses entreprises utilisent ces techniques avec beaucoup de succès dans toutes les fonctions de l’entreprise et en particulier dans les domaines de la relation client, de la logistique, de la qualité.

Pour aller plus loin sur ce sujet vous pouvez utilement consulter mes articles ci-dessous :

5 mythes sur le data mining

En analyse de données comme en cuisine, la réussite se joue en grande partie avec les ingrédients
Fouille de données : une démarche en cinq étapes

Fouille de données : les biens faits des approches en laboratoire

Faire son data mining directement dans son entrepôt de données

Fouille de données & PMML : vers une extraction de données plus rapide, plus facile et moins coûteuse

Comment choisir un outil d’exploration de données
Rédigé par Michel Bruley le Lundi 9 Mars 2009 à 09:09 | Permalien | Commentaires {0}
Le système d’information décisionnel des dirigeants et des collaborateurs d’une entreprise, a pour objet de permettre de rassembler et d’analyser des données concernant le passé, le présent et le futur, de façon à faciliter le suivi et la compréhension détaillée de l’environnement, des résultats, des acteurs internes ou externes, notamment les clients, pour optimiser les décisions stratégiques et la conduite des opérations.

Pour qu’une entreprise obtienne un avantage sur la concurrence, il convient qu’elle mobilise de nombreux acteurs dans le cycle qui mène de la donnée à l’action. En effet un avantage significatif s’obtient par la mise en œuvre d’actions permettant la réalisation profitable d’une opportunité : opportunité + action = avantage. L’opportunité elle même est le produit d’une information et d’une décision : information + décision = opportunité. Dans ce cycle, différents acteurs (statisticiens, analystes métier, responsables d’activité, collaborateurs en charge des clients, des fournisseurs, etc.), sont impliqués aux différentes étapes qui voient la naissance des opportunités et leur réalisation.

Si la qualité d’un système d’information décisionnel permet d’espérer le succès, il est certain que celui-ci ne s’obtient pas de façon mécanique. Les paragraphes ci-dessous présentent de façon résumée, quelques idées à méditer sur le cycle : Données – Informations – Décisions - Actions.

Il est fondamental de bien séparer les données et l'information

Entre la donnée et l'information, au sens général du terme, il y a nécessairement un ou plusieurs médiateurs qui organisent, choisissent, rapprochent certaines données, décident d'en abandonner d'autres, pour pouvoir en tirer une sorte de synthèse d'un niveau plus élaboré que ses éléments constitutifs de base. Au final le travail de l'analyste est de dégager des faits, de les replacer dans une perspective, de les pondérer les uns par rapport aux autres, de les rendre clairs et compréhensibles : faits plus commentaires donnent alors l’information.

Transformer les données en information est un métier qui nécessite des compétences, une morale pour passer de la donnée à l'information, car cela implique d'y ajouter du subjectif, du spéculatif. L'essentiel des informations utiles à la décision sont extérieures à l'entreprise (clients, concurrence, ...), et l'utilisateur doit cerner les informations dont il a besoin, or on entend souvent les utilisateurs se plaindre de ne pas avoir la "bonne" information. Souvent cela vient du fait que les définitions employées ne correspondent pas à leurs visions personnelles.

Une information n'a pour raison d'être que d'aboutir à une décision qui souvent se traduit en action

Les passages de la donnée à l'information et de l'information à la décision supposent une suite d'actions volontaires, réfléchies, intelligentes. Les mots information et décision sont tellement multiformes qu'ils peuvent avoir des sens contraires : une information peut être une désinformation, et une absence de décision faire office de décision. Décider est différent de ratifier, c'est aussi créer et imaginer. Décision peut dire fixation de règles, étant entendu que l'application d'une règle ne suppose aucune prise de décision, mais par contre ne pas appliquer une règle est une décision. Souvent le contenu d'une décision sert d'information pour prendre une autre décision, on constate qu'il y a un réseau de décisions, avec des liens de dépendance et des liens pour information et pour action. Enfin, force est de constater que de nombreuses actions ne sont pas la suite d’un acte de décision.

La maîtrise de l'information est source de pouvoir

Les utilisateurs cherchent des systèmes à leur mesure et qu’ils maîtrisent. Ceci induit le risque de voir apparaître dans l'entreprise de multiples systèmes, non nécessairement cohérents entre eux, voire redondants. Les directions générales souhaitent des systèmes qui supportent en priorité leurs initiatives stratégiques et assurent la cohérence d’ensemble de l’entreprise. Ceci conduit à mettre en place des systèmes qui visent à partager les informations entre les différents utilisateurs.

Les informaticiens veulent bâtir des systèmes qui répondent à tous les besoins, qu'ils soient exprimés ou non. L'intention est louable, mais certainement un peu utopique, car les activités et les besoins d’une entreprise sont par essence évolutifs. Cependant suivant l’infrastructure mise en place (systèmes indépendants ou système d’entreprise), il est plus ou moins facile de concilier personnalisation, performance, cohérence et évolution.

Pour aller plus loin sur le sujet :
Donnée
Information
Décision
Action
Rédigé par Michel Bruley le Jeudi 26 Février 2009 à 14:35 | Permalien | Commentaires {1}
1 ... « 17 18 19 20


> A LIRE EN CE MOMENT SUR DECIDEO
Profil
Michel Bruley
Michel Bruley



Galerie
scan0578.jpg
B6.JPG
B1.JPG
A.JPG
B4.jpg
B8.jpg

RSS ATOM RSS comment PODCAST Mobile